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Abstract—Human impressions of robot performance are often
measured through surveys. As a more scalable and cost-effective
alternative, we investigate the possibility of predicting people’s
impressions of robot behavior using non-verbal behavioral cues
and machine learning techniques. To this end, we first contribute
the SEAN TOGETHER Dataset consisting of observations of
an interaction between a person and a mobile robot in a
Virtual Reality simulation, together with impressions of robot
performance provided by users on a 5-point scale. Second, we
contribute analyses of how well humans and supervised learning
techniques can predict perceived robot performance based on
different observation types (like facial expression features, and
features that describe the navigation behavior of the robot and
pedestrians). Our results suggest that facial expressions alone
provide useful information about human impressions of robot
performance; but in the navigation scenarios that we considered,
reasoning about spatial features in context is critical for the
prediction task. Also, supervised learning techniques showed
promise because they outperformed humans’ predictions of robot
performance in most cases. Further, when predicting robot
performance as a binary classification task on unseen users’ data,
the F1-Score of machine learning models more than doubled in
comparison to predicting performance on a 5-point scale. This
suggested that the models have good generalization capabilities,
although they are better at telling the directionality of robot
performance than predicting exact performance ratings. Based on
our findings, we provide guidelines for implementing supervised
learning models that map implicit human feedback to impressions
of robot performance in real-world navigation scenarios.

I. INTRODUCTION

As a scalable alternative to measuring subjective impres-
sions of robot performance through surveys, recent work in
Human-Robot Interaction (HRI) has explored using implicit
human feedback to predict these impressions [2, 18, 57, 72].
These are communicative signals that are unintentionally ex-
hibited by people [36]. They can be reflected in human actions
that change the world’s physical state [53] or can be nonverbal
cues, such as facial expressions [18, 57] and gaze [47, 2],
displayed during social interactions. Implicit feedback serves
as a burden-free information channel that sometimes persists
even when people don’t intend to communicate [35].

We expand the existing line of research on predicting
impressions of robot performance from nonverbal human
behavior to dynamic scenarios involving robot navigation.
Prior work has often considered stationary tasks, like physical
assembly at a desk [58] or robot photography [72], in labora-
tory environments. We instead explore the potential of using
observations of body motion, gaze, and facial expressions to
predict a human’s impressions of robot performance while a
robot guides them to a destination in a crowded environment.

Fig. 1: Data collection. Humans controlled an avatar in the
simulation with VR (a) while they were guided by a Fetch
robot (b). The screen on the desk shows what the user saw.

These impressions (which we also refer to as human percep-
tions) correspond to subjective opinions of how well a robot
is performing the navigation task. Predicting them in crowded
navigation scenarios is more challenging than in stationary
settings because human nonverbal behavior can be a result
of not only robot behavior, but also other interactants in the
environment. Further, because of motion, nonverbal responses
to the robot may change as a function of the interaction
context. For example, imagine that the person that follows the
robot looks downwards. This could reflect paying attention to
the robot, or be a result of the person inspecting their nearby
physical space, which changes during navigation.

To study implicit feedback during navigation tasks, we per-
formed a systematic data collection using the Social Environ-
ment for Autonomous Navigation (SEAN) 2.0 [67] with Vir-
tual Reality (VR) [73].1 Humans took part in the simulations
through an avatar, which was controlled using a VR headset,
as in Fig. 1. The headset enabled immersion and allowed us to
capture implicit feedback features like gaze. Also, it facilitated
querying the human about robot performance as navigation
tasks took place. We considered robot performance as a multi-
dimensional construct, similar to [72], because humans may
care about many aspects of a robot’s navigation behavior, as
discussed in the social robot navigation literature [22, 44, 21].

Then, we investigated fundamental questions about the
value of implicit feedback signals in predicting subjective
impressions of robot performance. First, we investigate to
what extent humans can predict a person’s impression of the

1Dataset and code to be released upon acceptance.



performance (along the dimensions of perceived competence,
surprise, and intention) based on visualizations of the obser-
vations of their interactions, as recorded in our navigation
dataset. Second, we investigate how well various supervised
learning models do this type of inference in comparison to
humans. Finally, we study the generalization capabilities of
supervised learning methods to unseen users.

Our analyses bring understanding to the complexity of
predicting humans’ impressions of robot performance in nav-
igation tasks. Based on our findings, we conclude this paper
with a set of suggested guidelines for implementing machine
learning algorithms that infer robot performance using implicit
feedback in real-world navigation scenarios. We hope that
these guidelines facilitate future efforts to make robots more
aware of their failures during navigation [63], as well as
facilitate aligning robot behavior to human preferences based
on implicit feedback [45, 18, 16].

II. RELATED WORK

A. Impressions of Robot Performance

Understanding human impressions of robot performance
is important. They can be used to evaluate robot policies
[61, 39, 49] and to create better robot behavior [62, 47, 17, 7],
increasing the likelihood of robot adoption. In this work, we
focus on inferring three robot performance dimensions relevant
to navigation [22]: robot competence, surprising behavior,
and clear intent. Robot competence is a popular performance
metric [14], especially in robot navigation [43, 66, 1]. Sur-
prising behavior violates expectations. It is often considered
undesired [3, 21] and may require explanations by the robot
[10]. Meanwhile, showing clear intent means that the robot
enables an observer to infer the goal of its motion [19]. If
humans fail to anticipate the motion of a robot because it
acts surprisingly or its intent is unclear, they will likely have
trouble coordinating their own behavior with it [54, 20].

B. Implicit Human Feedback

We distinguish between explicit and implicit human feed-
back about robot performance. Explicit feedback corresponds
to purposeful or deliberate information conveyed by humans to
robots, e.g., through preferences [8, 60] or survey instruments
[4, 43]. Meanwhile, implicit feedback are cues and signals
that people exhibit without intending to communicate some
specific information about robot performance, yet they can be
used to infer such perceptions. Inferring performance from im-
plicit feedback can reduce the chances of excessively querying
users for explicit feedback in robot learning scenarios [52, 25],
thereby minimizing the risk of feedback fatigue [38]. Learning
from implicit feedback is not without challenges, however, as
it can be difficult to interpret [18, 57]. For example, this can
happen due to inter-person variability in facial expressions [26]
or similar signals being produced for different reasons [12].

Our work considers a variety of nonverbal implicit signals,
including gaze, body motion, and facial expressions, which
have long been studied in social signal processing [69]. While
in some cases these signals are treated as explicit feedback

(e.g., to interrupt an agent [71]), we consider them implicit
feedback because we do not prime humans to react in specific
ways to a robot. As such, our work is closer to [18, 70, 45,
56, 12], which used nonverbal signals to identify critical states
during robot operation, detect robot errors, and adjust robot
behavior.

C. Data Collection in HRI: VR and Other Methodologies

Different kinds of HRI research methods have been used in
the literature to gather interaction data, such as in-person user
studies (e.g., [23, 65, 43]), observational public data collec-
tions (e.g., [42, 34]), crowdsourcing studies (e.g., [11, 64, 32]),
etc. See [5] for an introduction to these methods.

We considered different ways of conducting our data col-
lection, but ultimately opted for gathering data with simulated
human-robot interactions in VR for several reasons. First, in
contrast to real-world data collection, simulation facilitated
querying humans about their impressions of robot performance
during interactions and resulted in fewer negative conse-
quences for interrupting the navigation task. This is illustrated
in Fig. 2. In lab studies, for instance, surveys that gather
general impressions of a robot are typically administered at
the end of interactions to avoid interrupting the natural flow
of events [72], which can cause unintended effects on collab-
orative tasks and interactants. In VR simulations, however, we
can gather feedback in-situ. We can freeze time during human-
robot interactions, query a participant about their impressions
of robot performance through the VR display, and then resume
the simulation as if the interruption had not occurred.

Second, simulations made human-robot interactions safer
in contrast to real-world interactions as we wanted to expose
participants not only to good robot navigation behavior, but
also bad behavior. This was important for inducing a wide
range of impressions about robot performance and, thus,
capturing varied implicit feedback signals. Prior work has used
simulations in HRI for safety reasons as well (e.g., [46, 30]).

Third, in contrast to crowdsourcing, our in-person data
collection reduced unrelated participant distractions [9] and
minimized potential issues with participant’s internet speed
[31, 66]. Early in our research process, we considered using
interactive surveys [66] for our data collection while capturing
implicit feedback signals through the webcams of remote
participants (e.g., as in [12]). However, after testing both
this setup and VR, we thought that the increased level of
immersion afforded by VR was important to gather naturalistic
human feedback.

III. PROBLEM STATEMENT & RESEARCH QUESTIONS

We study if a person’s impression of a robot’s performance
can be predicted using observations of their interaction in dy-
namic tasks involving navigation. Specifically, we aim to learn
a mapping from a sequence of observations to an individual’s
reported impressions at the end of the sequence (as in Fig. 2b).
We consider multiple robot performance dimensions on a 5-
point scale, as detailed later in Sec. IV.
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Fig. 2: a) It is typical to gather explicit human feedback about robot performance using surveys after human-robot interactions
conclude because interruptions by the experimenters can easily bias the social encounters. Unfortunately, the feedback from
surveys tends to be very limited, making it difficult to understand robot performance at a granular level. Alternatively,
participants may complete video annotations of their experiences [73], but this can be time consuming and taxing, especially
in continuous navigation tasks. b) In this work, we first collect a dataset of human impressions of a robot’s performance by
prompting participants during interactions using VR. Then, we use this explicit feedback to train models that infer human
impressions of robot performance based on observations of the interactions, especially including observations of human implicit
feedback. The value of such a model is that once it is trained, it can be reused to estimate robot performance during new
interactions (Deployment Step), without having to ask humans for explicit feedback anymore.

Consider a dataset of observations and performance labels,
D = {(oi

1:T , y
i)}, where o1:T is an observation sequence of

length T , y is a performance rating given by a robot user at the
end of the sequence, and i identifies a given data sample. We
place emphasis on predicting a person’s impression of a robot
by considering observations of their implicit feedback. Thus,
the observations oi

t include features that describe the person’s
non-verbal behavior, such as gaze and facial expressions.
Also, the observations include features that describe the spatial
behavior of all the agents in the environment, the navigation
task, and the space occupied by static objects. Given this data,
we investigate three fundamental research questions:

1) How well can human observers predict a user’s impression
of robot performance? By answering this question, we obtain
a human baseline for learning a function f : O1:T → Y ,
where O is the observation space and Y is performance. Also,
through this question, we study the impact of two types of
observations in the prediction task: observations that describe
fine-grained facial expressions for a robot user; and other
observations about the user, the robot and their environment.
As mentioned earlier, observations of fine-grained expres-
sions have gained popularity in recent work to infer human
perceptions of an agent’s behavior [18, 12, 72, 58]. Other
observations (e.g. body motion and nearby static obstacles) can
be more easily computed in real-world navigation tasks, but
their usefulness on a robot’s ability to infer users’ impression
of their performance is less understood.

2) Can machine learning methods predict impressions of robot
performance as well as humans? Ultimately, we are interested
in bringing us forward to a future where machine learning
models facilitate evaluating robot performance at scale, with-
out having to necessarily ask users all the time for explicit
feedback (as in the Deployment Step of Fig. 2b). Thus, we
evaluate various machine learning models to approximate the
function f , as defined in the prior question.

3) How well can machine learning models generalize to un-
seen users? In future robot deployments, a robot may interact
with completely new users. Thus, we conduct a more detailed
analysis of the performance of various machine learning mod-
els in predicting impressions of robot performance according
to users for whom the model had no data at training time.

IV. DATA COLLECTION WITH SEAN AND VR

For our data collection, we leveraged the SEAN 2.0 sim-
ulator [67]. SEAN 2.0 integrates with the Robot Operating
System (ROS) [51] and supports Virtual Reality [73]. Partici-
pants used a Vive Pro Eye VR device to control an avatar in a
warehouse (as in Fig. 1(a)). The VR headset captured implicit
signals from the participants, like eye and lip movements.

During data collection, the participants had to follow a Fetch
robot that guided them to a destination that was unknown to
them a priori but was marked by a red cross on the ground.
Fig. 1(b) shows an example first-person view of the simulation
during robot-guided navigation. The Fetch robot was con-
trolled with ROS in SEAN. The environment contained other



algorithmically controlled pedestrians and obstacles typical of
warehouses.

The participants provided ratings of robot performance
through the simulation’s VR interface. The frame rate of the
rendering of the virtual environment in the participants’ first-
person view in VR was over 30 frames per second. Our data
collection protocol, described below, was approved by our
local Institutional Review Board and refined through pilots.

A. Participants

We recruited 60 participants using flyers and by word of
mouth. They were at least 18 years old, fluent in English,
and had normal or corrected-to-normal vision. Overall, 19
participants identified as female, 40 as male, and 1 as non-
binary or third gender. Most of them were university students,
and ages ranged from 18 to 43 years old. Participants were
somewhat familiar with robots, as indicated by a mean rating
of M = 4.20 (with standard error SE = 0.18) on a 7-point Likert
responding format (1 being lowest). Yet, they were somewhat
unfamiliar with VR (M = 3.72, SE = 0.20). No participant had
prior experience with SEAN or social robot navigation in VR.

B. Data Collection Procedure

Protocol: A data collection session took place as follows.
First, the participant provided demographics data. Second, the
experimenter introduced the robot, explained the navigation
task in which the participant was to follow the robot, and
demonstrated how to use the VR device to control their avatar
in SEAN and label robot performance. Third, the participant
experienced four navigation tasks with the robot, each with
a particular starting position and destination. For consistency,
the pedestrians were controlled using the same behavior graph
controller provided in SEAN 2.0 [67] and the robot used the
same navigation logic across the tasks.

In each task, the robot guided the participant to the destina-
tion and repeatedly changed its behavior (as further detailed
below). Importantly, the interaction was paused before and
after each behavior change took place, at which point the
participant was asked to evaluate the robot’s most recent
navigation performance. A typical data collection session was
completed in 45 min to 1 hour. Participants were compensated
US$15 for their time.

Robot Behaviors: During a navigation task, the robot
switched between one of these three types of behavior:

1. Nav-Stack. The robot navigated efficiently to the destination
based on the path planned by the ROS Navigation Stack with
social costs [40]. This behavior lasted 40 seconds.
2. Spinning. The robot rotated at its current position, which we
expected to be perceived as if the robot was confused. This
behavior lasted 20 seconds. It was implemented by sending
angular velocity commands to the robot’s motion controller.
3. Wrong-Way. The robot moved in the wrong direction, away
from the task’s destination, effectively making a mistake
during navigation. This behavior lasted 20 seconds and was

implemented using the Navigation Stack as well, but with an
incorrect navigation goal.

Unbeknownst to the participants, the robot switched to Nav-
Stack behavior after Spinning or Wrong-Way during naviga-
tion. It randomly switched to Spinning or Wrong-Way after
finishing Nav-Stack. The design was intended to maintain a
consistent rate of sub-optimal behavior and avoid user bore-
dom or significant confusion, which can be caused by more
stochastic behavior patterns that are hard for participants to
reason about. We expected the behaviors to elicit both positive
and negative views of the robot, leading to a large variety of
non-verbal reactions and impressions of robot performance.

Impressions of Robot Performance: During a navigation
task, we paused the interaction at 4 seconds before, and at
8 seconds after the robot switched between behaviors. The
elapsed time for the latter pause was longer in order to give
people enough time to experience the latest robot behavior.

As shown in the supplementary video, impressions of robot
performance were provided through an interface embedded in
the simulation. The interface asked the participants to indicate
their impression about the robot’s most recent performance in
regard to: 1) “how competent was the robot at navigating,” 2)
“how surprising was the robot’s navigation behavior,” and 3)
“how clear were the robot’s intentions during navigation.”
Participants provided ratings for these three dimensions of
robot performance on a 5-point Likert responding format, e.g.,
with 1 being “incompetent”, 2 being “somewhat incompetent”,
3 being “neither competent nor incompetent”, 4 being “some-
what competent”, and 5 being “competent”.

C. Observations

We organized observations of human-robot interactions, as
recorded in SEAN-VR [73], into the features described below.

Participants’ Facial Expression Features: We captured the
participants’ eye and lip movements, as well as their gaze
through the VR headset using the VIVE Eye and Facial Track-
ing (SRanipal) SDK. The eye and lip movements corresponded
to 73 features that described the geometry of the face through
blend shapes. The gaze was a 3D vector providing the direction
of gaze of the person relative to their face.
Spatial Behavior Features: During navigation, we cap-
tured the poses of the robot, the participant, and the other
automatically-controlled avatars on the ground plane of the
scene. Then, we computed the poses of the avatars relative
to the robot, considering only those within a 7.2m radius,
as this region is typically considered a robot’s public space
[27, 55, 33]. Each of the features were (x, y, θ) tuples with x,
y being the position and θ the body orientation (yaw angle)
relative to a coordinate frame attached to the robot.
Goal Features: A navigation task had an associated destina-
tion or goal that the robot had to reach. We converted the
goal pose in a global frame in the warehouse to a pose in a
coordinate frame attached to the robot. This pose described the
robot’s proximity and relative orientation to its destination.



Occupancy Features: During navigation, the robot localized
[24] against a 2D map of the warehouse. We used a cropped
section of the map around the robot (of 7.2m × 7.2m) to
describe the occupancy of nearby space by static objects.

D. Perceived Robot Performance

Impressions of robot performance were as expected: ratings
for competence and clear intention were generally higher for
Nav-Stack than for Spinning and Wrong-Way, while the latter
two tended to be more surprising than the former. Pairs of
performance dimensions were significantly correlated with ab-
solute Pearson r-values greater than 0.6. An exploratory factor
analysis suggested that the dimensions could be combined into
one performance factor (which explained 77% of the variance).

Using the features described before and the impressions of
robot performance provided by the participants, we created a
dataset of paired observation sequences and target performance
values. We further refer to this data as the SEAN virTual rObot
GuidE with impliciT Human fEedback and peRformance
Dataset (SEAN TOGETHER Dataset). As described below,
we used this dataset to investigate the questions in Sec. III.

V. FINDINGS

A. How Well Can Human Observers Predict a User’s Impres-
sion of Robot Performance?

To better understand the complexity of inferring impres-
sions of robot performance, we evaluated how well human
annotators could solve the prediction problem. To this end, we
administered an online survey through www.prolific.co,
a platform for human data collection. In the survey, human an-
notators observed visualizations of observations in our SEAN
TOGETHER Dataset. Then, they tried to predict performance
ratings provided by the people who followed the robot.

Method: For the survey, we randomly selected 2 data samples
from each of the 60 participants in our data collection,
with one gathered before and the other gathered after the
robot’s behavior changed. The observations in each sample
corresponded to an 8-second 5-hz window of features right
before the corresponding performance label was provided.

As shown in Fig. 3, data samples were visualized in two ways:
1. Facial Rendering. We created a human face rendering in
Unity by replaying the facial expression features on an SRa-
nipal compatible avatar, as shown in Fig. 3 (right). This
visualization was motivated by the use of facial expressions
in prior work on implicit feedback (e.g., [18]).
2. Navigation Rendering. We created a plot of features that
described the navigation behavior of the robot and the avatars
in the simulation. The plot showed features that, using ex-
isting perception techniques, may be easier to estimate than
facial features in real-world deployments. These features are
the spatial behavior features, the robot’s goal location, the
occupied space near the robot, and the gaze direction of the
participant – the last of which could be approximated using an
estimate of the person’s head orientation [48]. Because prior

Fig. 3: A data sample from the Nav.+Facial condition. The
left plot shows gaze, spatial behavior, goal, and occupancy
features: is the robot’s pose; is the pose of the
participant following the robot during the VR interaction;

indicates the gaze of the participant; are the poses
of algorithmically controlled avatars; is the destination
position that the robot navigated towards; and occupancy in
the environment is indicated by black pixels (occupied) and
white pixels (unoccupied). The right visualization shows a
rendering of the facial expression features of the participant.

work suggests that it is easier to make sense of implicit human
feedback in context [12], the plot was always centered on the
robot, making its surroundings always visible as in Fig. 3 (left).

We used the visualizations to create three annotation con-
ditions that helped understand the value of different features:
1) Facial-Only: for a given data sample, annotators only saw
the facial rendering; 2) Nav.-Only: annotators only saw the
navigation rendering; and 3) Nav.+Facial: annotators saw the
navigation rendering first, then the facial rendering and, finally,
saw a video with both visualizations together (Fig. 3).

Each of the data samples was annotated by 10 unique people
in each condition. The annotators were instructed to predict
how the participant who controlled the avatar that followed
the robot perceived the robot’s performance. The samples they
annotated were presented in random order. Each annotator was
paid US$7.5 for approximately 30 min of annotation time. To
encourage high-quality annotations, we also gave them a bonus
of US$0.125 for each correct prediction that they made.

Annotators: We recruited a total of 100 annotators. Thirty-five
of them identified as female, 60 as male, and 5 as non-binary or
third gender. Ages ranged from 18 to 75 years old. Annotators
indicated similar familiarity with robots (M = 4.12, SE = 0.14)
as the data collection participants, though the annotators were
slightly more familiar with VR (M = 4.50, SE = 0.16).

Results: We used linear mixed models estimated with RE-
stricted Maximum Likelihood (REML) [28, 59] to analyze
errors in the predictions for each performance dimension.
Our independent variables were Before/After Robot Behavior
Change (Before, After) and Annotation Condition (Facial-
Only, Nav.-Only, Nav.+Facial). Also, we considered Annotator
ID as a random effect because annotators provided predictions
for multiple data samples. Our dependent variables were
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the absolute error between an annotator’s prediction and the
performance rating in our SEAN TOGETHER Dataset.

We found that the Annotation Condition had a significant
effect on the absolute error for Competence, Surprise, and
Intention (p < 0.0001 in all cases). As in Fig. 4(a), Tukey HSD
post-hoc tests showed that for Competence and Surprise, the
errors for Nav.+Facial and Nav.-Only were significantly lower
than Facial-Only, yet the difference between the former two
conditions was not significant. For Intention, all conditions
led to significantly different errors. Nav.+Facial resulted in
the lowest error, followed by Nav.-Only and then Facial-
Only. These results suggest that facial expressions provide
information about impressions of robot performance though,
more generally, the features used to create the Navigation Ren-
derings seemed to be the most critical for these predictions.

Before/After Robot Behavior Change had a significant effect
on the prediction errors for Competence and Intention (p
< 0.0001 in both cases). As in Fig. 4(b), the error was
significantly lower for samples Before a behavior change than
for samples After a change for these performance dimensions.
We suspect this was because the robot sometimes demon-
strated two behaviors in the samples collected After a behavior
change, but the ones Before only showed one behavior.

Table I shows the F1-Scores for the annotator predictions
(see HA rows). The low scores suggest that correctly predict-
ing impressions of robot performance on a 5-point responding
format was difficult for humans. Despite this, we suspected
that humans could do a more reasonable job at distinguishing
impressions of poor robot performance from other impressions
and, if this was the case, then this could open up doors in the
future to using this binary signal (instead of the more fine-
grained feedback) as a reward signal to adapt robot behavior
in navigation tasks, e.g., in line with [37, 41]. Thus, we
transformed the ground truth ratings from our data collection
to binary values, one corresponding to low performance (e.g.,
1-2 ratings for competence) and another to medium-to-high
performance (3-5 ratings for competence). Also, we trans-
formed the annotators’ predictions similarly. This led to F1

scores of 0.69 for Competence, 0.64 for Surprise, and 0.69
for Intention. As expected, human annotators were better at
telling the directionality of robot performance ratings than at
predicting their exact magnitude.

Finally, we investigated the performance of human anno-
tations over the span of data collection because prior work

suggests that the expressiveness of people engaged in human-
robot interactions can change over time [13], e.g., potentially
due to changes in their expectations about the robot or due to
fatigue. Figures 5(a)–(c) show the evolution of mean absolute
errors for the human annotators’ predictions over 10-minute
intervals of interaction, considering each performance dimen-
sion. In general, human performance was very stable, suggest-
ing no major bias over time in participant’s spatial behavior or
facial expressions. Interestingly, the results also suggested that
improvements in performance with an individual feature did
not necessarily translate in improvements on the Nav.+Facial
condition. Humans may have combined the information from
the different implicit feedback modalities in subtle ways when
making predictions.

B. Can Machine Learning Methods Predict Impressions of
Robot Performance as Well as Humans?

We compared human prediction performance with a variety
of classifiers, including a random forest and neural networks.

Method: Machine learning (ML) models were evaluated on
the same samples shown to the human annotators (n = 120).
The rest of the data was used for training (n = 2280)
and validation (n = 569). We trained one model for each
combination of feature sets shown to the human annotators
(Facial-Only, Nav.-Only, and Nav.+Facial). The Nav. feature
set included occupied space near the robot, which we encoded
using a ResNet-18 representation [29]. We repeated training
for each model 10 times with varying random seeds. The
Random Forest (RF) used 100 trees and the depth was grown
until leaves had less than 2 samples. The neural networks had
a number of parameters on the same order of magnitude:
5.4 × 106 for a Multi-Layer Perceptron (MLP), 2.1 × 106

for a message-passing Graph Neural Network (GNN) [6], and
6.5× 106 for a Transformer (T) [68]. Networks were trained
using minibatch gradient descent with the Adam optimizer
and cross-entropy loss. Learning rate, batch size, and dropout
were chosen using grid search with validation-based early
stopping [50]. We also compared all these models with a
random sampling baseline.

Results: As is shown in Table I, ML models outperformed
both human-level performance and random baseline in all
cases when measured via F1-Score. When measured using
Accuracy and Mean Absolute Error, ML models performed
the best, except for Intention when using Nav.+Facial fea-
tures. These outcomes indicate that our implicit feedback data
contained useful information that can be leveraged by ML
models to predict users’ impressions of robot performance.
Further, ML models trained with Nav.-Only and Nav.+Facial
features outperformed those trained with Facial-Only features.
This finding aligns with our observation in Sec. V-A on the
criticality of the Nav. features in comparison to the Facial
features on performance prediction.

Figures 5(d)–(f) show the evolution of mean absolute errors
for the Random Forest model, which generally performed
the best, over 10-minute intervals of interaction during the



TABLE I: Machine learning methods and human annotation (HA) performance on 120 examples. Methods: Random (R)
sampling from the distribution of labels in the training set, Random Forest (RF), Multi-Layer Perceptron (MLP), Graph Neural
Network (GNN), and Transformer (T). Arrows indicate that higher (↑) and lower (↓) results are better. Cells with (-) do not have
results because a GNN trained on facial features only was effectively an MLP. The Best and Second results are highlighted.

F1-Score (µ± σ) ↑ Accuracy (µ± σ) ↑ Mean Absolute Error (µ± σ) ↓

Facial Nav. Nav.+Facial Facial Nav. Nav.+Facial Facial Nav. Nav.+Facial

C
om

pe
te

nc
e HA 0.16± 0.0 0.28± 0.1 0.29± 0.2 0.19± 0.1 0.40± 0.1 0.42± 0.1 1.74± 0.2 1.03± 0.3 0.99± 0.4

R 0.18± 0.0 0.19± 0.0 0.17± 0.0 0.21± 0.0 0.21± 0.0 0.20± 0.0 1.73± 0.1 1.75± 0.1 1.81± 0.1
RF 0.19± 0.0 0.37± 0.0 0.38± 0.0 0.33± 0.0 0.52± 0.0 0.52± 0.0 1.43± 0.0 0.88± 0.0 0.82± 0.0

MLP 0.23± 0.0 0.29± 0.1 0.25± 0.1 0.28± 0.0 0.48± 0.0 0.44± 0.1 1.66± 0.1 1.07± 0.3 1.19± 0.4
GNN - 0.31± 0.1 0.33± 0.0 - 0.43± 0.1 0.39± 0.1 - 1.22± 0.3 1.04± 0.0

T 0.21± 0.0 0.33± 0.0 0.33± 0.0 0.30± 0.0 0.43± 0.0 0.41± 0.1 1.58± 0.1 0.97± 0.0 0.95± 0.0

Su
rp

ri
se

HA 0.18± 0.0 0.24± 0.1 0.25± 0.1 0.20± 0.1 0.30± 0.1 0.32± 0.1 1.53± 0.3 1.19± 0.2 1.12± 0.2
R 0.19± 0.0 0.21± 0.0 0.17± 0.0 0.20± 0.0 0.21± 0.0 0.18± 0.0 1.64± 0.1 1.60± 0.1 1.68± 0.1

RF 0.29± 0.0 0.38± 0.0 0.34± 0.0 0.30± 0.0 0.40± 0.0 0.34± 0.0 1.30± 0.0 0.93± 0.0 0.98± 0.0
MLP 0.24± 0.0 0.26± 0.1 0.24± 0.1 0.25± 0.0 0.30± 0.0 0.29± 0.1 1.23± 0.1 1.12± 0.2 1.08± 0.1
GNN - 0.29± 0.0 0.27± 0.0 - 0.30± 0.0 0.28± 0.0 - 1.13± 0.1 1.07± 0.1

T 0.27± 0.0 0.29± 0.0 0.32± 0.1 0.28± 0.0 0.31± 0.0 0.33± 0.1 1.37± 0.1 1.07± 0.1 1.04± 0.1

In
te

nt
io

n

HA 0.18± 0.0 0.25± 0.1 0.28± 0.1 0.21± 0.1 0.37± 0.2 0.41± 0.1 1.64± 0.2 1.19± 0.4 1.07± 0.2
R 0.21± 0.1 0.19± 0.0 0.17± 0.0 0.23± 0.1 0.22± 0.0 0.19± 0.0 1.70± 0.1 1.73± 0.1 1.80± 0.1

RF 0.28± 0.0 0.28± 0.0 0.24± 0.0 0.37± 0.0 0.43± 0.0 0.41± 0.0 1.45± 0.0 1.13± 0.0 1.14± 0.0
MLP 0.27± 0.0 0.26± 0.1 0.22± 0.0 0.31± 0.0 0.41± 0.1 0.39± 0.1 1.86± 0.1 1.31± 0.3 1.51± 0.5
GNN - 0.28± 0.0 0.29± 0.0 - 0.37± 0.0 0.35± 0.0 - 1.32± 0.1 1.25± 0.1

T 0.24± 0.0 0.29± 0.1 0.32± 0.0 0.33± 0.0 0.41± 0.0 0.40± 0.0 1.63± 0.1 1.21± 0.1 1.20± 0.1
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Fig. 5: Mean Absolute Errors (MAE) of human annotation and Random Forest (RF) results over 10-minute intervals of the
data collection sessions. MAE was computed for all data samples in each interval, and then the average and standard errors
of MAE were calculated considering the performance of the 10 unique annotators (for human annotation results in (a)–(c)) or
the 10 Random Forest models trained with different seeds in Table I (RF results in (d)–(f)).



data collection. Similar to the results from human annotators
(Figures 5(a)–(c), Sec. V-A), the error for the RF model did not
fluctuate drastically, although the performance for Intention
prediction with Nav. and Nav.+Facial features decreased in
the last two time intervals of data collection (having higher
mean absolute error). The decrease in performance could be
the result of a distribution shift, especially in the last interval
which had the fewest number of samples because not all
interactions took the full 40 minutes. Also, a good proportion
of the samples in the last time interval showed the end of
navigation tasks, at which point the participants could have
been more sensitive to robot navigation in the wrong direction.
Indeed, there was a higher proportion of lower ratings for
Intention in the last interval than in the other intervals, as
shown in the supplementary material.

The results in Table I and Fig. 5 motivated us to focus the
analysis in the next section in the aggregate, overall results
rather than the interval-based results.

C. Can Machine Learning Generalize to Unseen Users?

We investigated how well learning models could predict
performance by a user whose data was held out from training.

Method: We used the models and training scheme from Sec.
V-B with all features (Nav.+Facial), but split the data using
leave-one-out cross-validation. For each fold, the data for one
participant was used as the test set and the remaining examples
were split between training (80%) and validation (20%). We
searched for new hyperparameters and computed results both
on 5-classes and on binary classification. Binary targets and
prediction labels were computed as in Sec. V-A.

Results: Fig. 6 reports F1-Scores over all folds. The models
generalized to unseen people with only a slight reduction in
performance in comparison to Table I. Also, the average F1-
Score across all performance dimensions improves from 0.25
in the multiclass case to 0.62 in the binary case. This makes
the ML predictions more usable in practice. For example, in
the future, we envision deploying the trained ML on new users
(as in Fig. 2b) in order to detect low robot performance. This
could be an indication that the robot made a mistake, triggering
interaction recovery behaviors like apologies or explanations
[63], which could increase trust on the system [15].

Multiclass Binary Binary BinaryMulticlass Multiclass
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0.2
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Fig. 6: ML models trained on Nav.+Facial features using
leave-one-out cross-validation and evaluated on the held-out
participant’s data. F1-Scores are computed over 5 classes
(Multiclass) and 2 classes (Binary). See the text for details.

VI. GUIDELINES FOR REAL-WORLD APPLICATIONS

We hope that future work leverages our findings to build
effective models for mapping implicit human feedback to
users’ impressions of robot performance in real-world social
navigation tasks. To this end, we first recommend prioritizing
robust people tracking and pose estimation over computing
fine-grained facial expressions, especially when computational
resources may be limited. Reasoning about spatial behavior
features in the context of the task can facilitate achieving
reasonable prediction performance with lower sensor require-
ments. Also, occlusions are likely more common for facial
expressions than body tracking in real-world applications.

Second, we recommend building models that focus on
identifying poor robot performance (performing binary clas-
sification) instead of predicting more granular impressions
of robot performance (e.g., on a 5-point scale). Even for
humans, the latter type of predictions are hard because of the
subjectivity of performance ratings.

Finally, if a robot is executing multiple behaviors, we
recommend considering whether the robot switched behaviors
recently when reasoning about performance predictions. As in
our results, predicting performance recently after a behavior
change can be more difficult than before, when the behavior
was more consistent.

VII. LIMITATIONS AND FUTURE WORK

Our work has several limitations that point to interesting
future directions. First, we obtained human baselines for
prediction performance, but used only a limited set of feature
combinations. In the future, it would be interesting to consider
a broader set of feature categories. For instance, future work
could evaluate the individual impact of gaze versus other
facial features, and further study the value of considering more
detailed human pose features (e.g., [74]) when inferring robot
performance. Second, because participants were wearing Vive
Pro Eye VR headsets in our data collection, our study was not
able to capture images of their real face. We instead used a
rendered face to visualize the captured eye and lip features (as
in Fig. 3) and 73 features provided by the headset to describe
the geometry of the face through blend shapes. However, this
specific visualization and featurization could have lost details
from subtle expressions that could be useful to predict robot
performance. In the future, it would be interesting to utilize
more advanced devices such as the recently released Apple
Vision Pro to create other datasets of implicit human feedback.
The new Apple device can sense faces in a way that allows
rendering higher quality avatars for users, and the data it
captures could potentially improve the accuracy and robustness
of ML models that predict robot performance. Third, our work
focused on navigation in a VR setup. An immediate next step
is to extend our work to real-world interactions, verifying the
generalizability of prediction models to different tasks and
considering sensor noise in the detected features. Lastly, the
inferred performance predictions, which could be considered
instantaneous rewards, could be used in the future to adapt
robot behavior in HRI [37, 41, 18].



VIII. CONCLUSION

This work contributes the SEAN TOGETHER Dataset,
consisting of observations of human-robot interactions in VR,
including implicit human feedback, and corresponding perfor-
mance ratings in guided robot navigation tasks. Our analyses
revealed that facial expressions can help predict impressions
of the robot, but spatial behavior features in the context of the
navigation task were more critical for these inferences. Our
experiments also demonstrated the ability of humans and ML
models to infer perceived robot performance from interaction
observations. Also, ML models were better at predicting the
directionality of impressions of robot performance (as a binary
classification task) than predicting exact performance ratings
(on a 5-point scale). Importantly, the models more than dou-
bled in F1-Score performance with binary classification than
multi-class classification, showing good potential to generalize
to novel users in the former case. Our dataset, accompanying
analyses, and guidelines pave a path forward to enabling
mobile robots to leverage passive observations of their users
to infer how well they complete navigation tasks. Potentially,
they could also use this feedback to interactively improve their
behavior in the future.
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